Project: IEEE 802.16 Broadband Wireless Access Working Group

Title: A Proposal for the Enhancement of the 802.16.1 MAC: MAC Header Optimization

Date Submitted: 2001-01-13

Source(s):
- Jacob Jorgensen, Malibu Networks, 1035 Suncast Lane, El Dorado Hills, CA 95630
 - Voice: 916-941-8810
 - Fax: 916-941-8850
 - mailto: jacob@malibunetworks.com
- Ken Peirce, Malibu Networks, 1035 Suncast Lane, El Dorado Hills, CA 95630
 - Voice: 916-941-8814
 - Fax: 916-941-8850
 - mailto: ken@malibunetworks.com
- Subbu Ponnuswamy, Malibu Networks, 1035 Suncast Lane, El Dorado Hills, CA 95630
 - Voice: 916-941-8815
 - Fax: 916-941-8850
 - mailto: subbu@malibunetworks.com

Re:
This document is a response to the following calls for contributions:

- Call for Contributions for Proposed Modifications of 802.16 MAC and 802.11a-HYPERLAN/2 PHY for the WirelessMAN™ Standard 802.16.4-00/01.
- IEEE 802.16 Task Group 3 Call For Contributions: Proposed MAC Enhancements, Key Characteristics, and Evaluation Criteria: Session #11, 802.16.4-00/25.

Abstract: This contribution provides a flexible header mechanism that will permit tailoring of the MAC header to optimize link efficiency and improve the performance of higher layer protocols.

Purpose: For Consideration for inclusion in the proposed 802.16.3 and 802.16.4 MAC standards

Notice: This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor grants a free, irrevocable license to the IEEE to incorporate text contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE's name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE's sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

Patent Policy and Procedures: The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures (Version 1.0) <http://ieee802.org/16/ipr/patents/policy.html>, including the statement IEEE standards may include the known use of patent(s), including patent applications, if there is technical justification in the opinion of the standards-developing committee and provided the IEEE receives assurance from the patent holder that it will license applicants under reasonable terms and conditions for the purpose of implementing the standard.

Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <mailto:r.b.marks@ieee.org> as early as possible, in written or electronic form, of any patents (granted or under application) that may cover technology that is under consideration by or has been approved by IEEE 802.16. The Chair will disclose this notification via the IEEE 802.16 web site <http://ieee802.org/16/ipr/patents/notices>.
A Proposal for the Enhancement of the 802.16.1 MAC
Jacob Jorgensen
Ken Peirce
Subbu Ponnuswamy
Malibu Networks

Introduction

One of the objectives of the BWA systems is to support IP traffic in business, home and multi-tenant environments. While the IP traffic will include many real-time applications such as Voice over IP (VoIP) and Video Conferencing, a significant portion of the traffic will be generated by Internet access and other bursty applications. Various measurements and studies [1, 2, 3] show the nature of such traffic, it consists of variable size IP packets. While the traffic mix is likely to change as new applications emerge, as has happened with the WWW, many recent studies show that the predominant traffic on the backbone and access networks will continue to be TCP. It has been shown that between 55% (ADSL access device [1]) and 90% (backbone [2] and [3]) of packets, and between 75% [1] and 85% [2] of all bytes transported are TCP. It has also been shown that although the average TCP packet size is between 400 and 500 [1, 2] bytes, between 50% and 60% [1, 2] of these TCP packets are of size 44 bytes or less. The smallest IP packets of size 40 byte not only include TCP ACKs, but also TCP Control packets such as SYN, FIN and RST.

VoIP traffic is typically carried by RTP over UDP. The sizes of audio packets depend on the type of CODEC and other factors. However, most of the commonly used CODECs generate voice packets of sizes in the range of the smallest TCP packets, as described above.

Given the high percentage of small packets and the bursty nature of IP traffic, it is important that BWA systems support these types of traffic efficiently in addition to supporting periodic and other types of traffic support described in the current 802.16.1 MAC draft. Thus the BWA MAC has to efficiently support both small and large IP packets over the air with minimal MAC overhead. To this effect, this contribution proposes a modification to the current 802.16.1 MAC draft that permits the BS and SS to remove optional fields in the packet headers and thereby improve the transport efficiency of the wireless link. In order to permit use of the flexible header, some of the fields in the header have been relocated.

Header Field Selection

The header field selection mechanism is incorporated into the Dynamic Service Addition and Change messages. The current design employs a three-way handshake for adding or changing a service flow. The packet sequence is as follows:
The DSA-ACK message has a section called the Service Flow Parameters. This section consists of a group of TLVs. The proposed selection mechanism is built around the use of the TLVs.

When one station (Station 1) desires to use a header field, it includes a TLV for that field as a Service Flow Parameter in the outgoing DSA-REQ message. If the peer (Station 2) does not want to use the field, it returns a DSA-RESP within a Service Flow Error Set (SFES). The SFES contains the unwanted field s TLV exactly as it was received from Station 1. If the field is accepted by Station 2, the field s TLV will not be placed in the FSES section.

General Service Flow Encodings – New TLVs

It is important to note that the default configuration, where none of the proposed TLVs are included in an SFP, results in the full header use as is done in the proposed draft.

The following subtypes will be added to the this section:

Remove Signalling and Sequencing

The operational parameter file that is held by each station will include information whether or not to use the signaling and sequencing field. This field allows upper layer protocol packets, such as IP, to be carried in multiple MAC data messages when the MTU of the upper layer protocol is larger than that of a MAC layer PDU data message. It also permits the use of ARQ as well as Convergence Sublayer and early discard eligibility signaling. Agreement to eliminate this field results in the removal of bytes 5 and 6 in the upstream or downstream Generic Headers.

<table>
<thead>
<tr>
<th>Name</th>
<th>Subtype (1 byte)</th>
<th>Length in bytes (1 byte)</th>
<th>Value (Variable Length)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remove Signaling Sequencing</td>
<td>24/25.TBD</td>
<td>0</td>
<td>Inclusion of this parameter indicates that the station does not wish to use fragmentation, signalling or ARQ.</td>
</tr>
</tbody>
</table>
Header Check Sequence

The operational parameter file that is held by each station will include information whether or not to request the use of the HCS field. This field provides a method for verifying the integrity of the Generic header following its reception. Agreement to remove the HCS results in the removal of the HCS field in the upstream and downstream Generic Headers. Removing this byte field would be desirable for systems that employ FEC.

<table>
<thead>
<tr>
<th>Name</th>
<th>Subtype (1 byte)</th>
<th>Length (1 byte)</th>
<th>Value (Variable Length)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remove Header Check Sequence</td>
<td>24/25.TBD</td>
<td>0</td>
<td>Inclusion of this parameter indicates that the station does not wish to include the HCS field in the Generic Header.</td>
</tr>
</tbody>
</table>

Remove Grant Management

The operational parameter file that is held by each station will include information whether or not to request the use of the GM byte field.

<table>
<thead>
<tr>
<th>Name</th>
<th>Subtype (1 byte)</th>
<th>Length (1 byte)</th>
<th>Value (Variable Length)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remove Grant Management</td>
<td>24/25.TBD</td>
<td>0</td>
<td>Inclusion of this parameter indicates that the station does not wish to use the GM field.</td>
</tr>
</tbody>
</table>

Modified Header Format

The following diagram depicts improved layouts for the Generic Headers.

![Diagram of Improved Generic Header Format]

Figure 2 Generic Header Format
The modified Generic Header in figure 2 shows the first four bytes unchanged except that the Header Type and CRC presence indicators have been swapped with two previously reserved bits. Byte 5 and 6 are the first of the optional fields and carries all of the additional subfields needed to use convergence sublayer signalling, packet discard eligibility, fragmentation and ARQ.

The new format allows systems that don’t need fragmentation, Grant Management, ARQ, convergence sublayer signalling or packet discard eligibility to incur only 4 bytes of overhead per data PDU. The rearranged full GH also eliminates the need for a sixteen bit ARQ sequence counter by combining the FSN and ARQ sequence number counters.

Fields that are not employed have their position occupied by the field in the next least significant byte position.

References