Outline of an OFDM Based PHY Proposal for 802.16.3

IEEE 802.16 Presentation Submission Template (Rev. 8)

Document Number: IEEE 802.16.3p-00/35

Date Submitted: 2000-11-6

Source:
Huanchun Ye
Radix Wireless
329 North Bernardo Avenue
Mountain View, CA 94043
Voice: 650-988-4783
Fax: 650-988-4746
E-mail: huanchun_ye@radixwireless.com

Venue:
IEEE 802.16 Session #10, Tampa, FL, Nov. 6-10, 2000.

Base Document:
IEEE 802.16.3c-00/35

Purpose:
Outline of an OFDM based PHY proposal, using TDD and adaptive multibeam base station.

Notice:
This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release:
The contributor grants a free, irrevocable license to the IEEE to incorporate text contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

IEEE 802.16 Patent Policy:
The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures (Version 1.0) <http://ieee802.org/16/pr/patents/policy.html>, including the statement “IEEE standards may include the known use of patent(s), including patent applications, if there is technical justification in the opinion of the standards-developing committee and provided the IEEE receives assurance from the patent holder that it will license applicants under reasonable terms and conditions for the purpose of implementing the standard.”

Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <mailto:r.b.marks@ieee.org> as early as possible, in written or electronic form, of any patents (granted or under application) that may cover technology that is under consideration by or has been approved by IEEE 802.16. The Chair will disclose this notification via the IEEE 802.16 web site <http://ieee802.org/16/pr/patents/letters>.
Frequency Band Requirement
Spectral Efficiency Requirement

Requirements:
- 1.5 Mbps/user
- 500 HH/mi² & 10% penetration
- 5 MHz
- 2% activity factor
- based on portable business users
- expected to be higher for home users

Cell Radius (miles)
Spectral Efficiency (bps/cell/Hz)

WCS (5 MHz)
WCS (10 MHz)
MMDS (24 MHz)
3.5 GHz (14 MHz)
Spectral Efficiency Comparison

- Radix Single Cell: 16 bps/cell/Hz
- Radix Multicell: 10 bps/cell/Hz
- VOFDM Single Cell: < 4 bps/cell/Hz
- VOFDM Multicell: < 1 bps/cell/Hz
Summary of the Proposed PHY

- **OFDM for non-LOS propagation and multipath mitigation**
 - large FFT size for better performance
 - better equalization in Rayleigh environment
 - generous delay spread compensation
 - better performance with adaptive antenna
 - adaptive modulation
 - QPSK, 8PSK, 16 & 32 QAM
 - concatenated codes
 - Reed-Solomon or turbo codes
 - convolutional codes as part of TCM
 - flexible channelization and frame structure
 - optimized for adaptive antenna processing
 - reduced synchronization overhead
Summary of the Proposed PHY (cont.)

• Adaptive multibeam
 – simultaneously steers a beam toward a desired CPE and nulls toward interferers ==> orders of magnitude increase in SNR and SINR
 – full frequency reuse between cells (n = 1)
 – many times frequency reuse within a cell (SDMA)

• TDD as the duplexing method
 – provides path reciprocity
 – reduces cost of subscriber stations

• Hybrid contention + reservation multiple access
 – TDMA/FDMA in both directions
 – contention is best for bursty traffic
 • SDMA reduces contention and improves throughput
 – bandwidth reservation for priority flows
Adaptive Multibeam vs Sectorized Antenna

- beam patterns are not fixed
- dynamically creates a beam toward a CPE for a session
 - beam width not constrained by the need to cover a cell
- simultaneously steer nulls toward interferers
Cost and Complexity

• Adaptive multibeam
 – builds on digital processing architecture of OFDM
 – using industry standard processor modules
 – innovative algorithms implemented in DSP software
 – proven technology successfully deployed in both military and commercial applications

• Increased cell radius and improved coverage
 – fewer base stations required
 – decoupled range and capacity allows flexible deployment
 • beam width not constrained by cell coverage
 • provides required range with smaller base stations
 • scale up capacity by adding processing modules

• Does not increases the cost of subscriber stations
Coverage Comparison - Area
Coverage Comparison - Range

Radix

VOFDM

WCS band
100 ft. BS antenna ht.
30 ft. SS antenna ht.
Implications for MAC Protocol

• adaptively formed beams are point-to-point
 – no broadcast mechanism
 – continuous TDM is not appropriate
 – FDMA/TDMA is more suitable

• contention based approach is very efficient
 – spatial division reduces contention
 – best for bursty traffic

• bandwidth reservation for priority flows
Thank You