OFDM-based 802.16.3 sub-11 GHz BWA Air Interface Physical Layer proposal

IEEE 802.16 Presentation Submission Template (Rev. 8)

Document Number:
IEEE 802.16.3-00/30

Date Submitted:
2000-10-30

Source:
Naftali Chayat and Tal Kaitz
Voice: +972-36457801
BreezeCOM
Fax: +972-36456222
Atidim Technology Park, Bldg. 1
P.O. Box 13139, Tel-Aviv 61131, Israel
E-mail: naftalic,talk@breezecom.co.il

Venue:
[Cite the specific meeting and any known agenda details.]

Base Document:
This presentation illustrates IEEE 802.16.3c-00/30, http://ieee802.org/16/tg1/contrib/802163c-00_30.pdf

Purpose:
To present an OFDM based PHY proposal for 802.16.3 TG3

Notice:
This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release:
The contributor grants a free, irrevocable license to the IEEE to incorporate text contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

IEEE 802.16 Patent Policy:
The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures (Version 1.0) <http://ieee802.org/16/pr patents/policy.html>, including the statement “IEEE standards may include the known use of patent(s), including patent applications, if there is technical justification in the opinion of the standards-developing committee and provided the IEEE receives assurance from the patent holder that it will license applicants under reasonable terms and conditions for the purpose of implementing the standard.”

Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <mailto:r.b.marks@ieee.org> as early as possible, in written or electronic form, of any patents (granted or under application) that may cover technology that is under consideration by or has been approved by IEEE 802.16. The Chair will disclose this notification via the IEEE 802.16 web site <http://ieee802.org/16/pr patents/notices>.
OFDM-based PHY Initial Proposal for 802.16.3 PHY

Naftali Chayat and Tal Kaitz

BreezeCOM
Why OFDM?

• Multipath robustness
• Incorporated in data-oriented standards
 – 802.11a: WLAN
 – HIPERLAN/2: WLAN with QoS
• Incorporated in broadcast standards
• Facilitates smart antenna techniques in multipath environment
• Enables fast parallel polling
Guard Interval and FFT Interval

After multipath

FFT interval

2+16 μsec =18 μsec
FFT size tradeoffs

• GI is dictated by multipath duration
• Short FFT advantages
 – Shorter training sequences
 – Lower payload size granularity
 – Phase noise tolerance
• Long FFT advantages
 – Lower GI overhead and pilot symbol overhead
 – Steeper spectrum falloff
 – Facilitates OFDMA
Throughput vs. FFT size

• 64 pt FFT mode
 – 48 data subcarriers, 4 pilot subcarriers

• 256 pt FFT mode (optional gear shift)
 – 208 data subcarriers, 8 pilot subcarriers
 • Faster spectral falloff is utilized to increase the fraction used.

• 16 pt Guard Interval in all modes (4 us @ 3.5 MHz)
 – Once the 64 pt FFT is used only in a small part of the packet, the incentive to decrease the GI reduces

• The 256 subcarrier mode provides
 – 27% rate improvement with 16 pt GI,
 – 18% rate improvement with 8 pt GI

• 1024 mode buys additional 6% or 3%, respectively
Which FFT size to use? Both!

- 64 pt FFT is used in HIPERLAN and 802.11a
- Many proposals sympathize with longer FFT, mainly 256
 - Couple of proposals go higher- 512, 2048
- Pure 256 and beyond is not efficient due to preamble size
 - Unless radically new preambles designed
- Solution – a FFT size switchover
FFT size switchover solution

- Start with FFT size 64 preamble
 - similar to 802.11a and HIPERLAN/2
- Transmit the PHY header at FFT size 64
 - The receiver uses the header for refining the carrier tracking loop frequency estimate
- Send short sequence to retrain loops
- Transmit payloads at FFT size 256
Time-frequency view
Modulation Constellations

- Use square QAM constellations only
 - Metrics extracted from I or Q separately
 - Significant implementation simplification
 - Not possible for 8PSK, 32QAM, 128QAM
 - ECC rate compensates for excess bits
- BPSK+4/16/64 QAM on downlink
 - 256 QAM optional
- BPSK+4/16 QAM on uplink
 - 64,256 QAM optional
Multipath effect on subcarriers

- Each subcarrier is scaled according to the channel, but they still do not interfere with each other
Error Correction Coding

• Convolutional code shall be used as a baseline mandatory mode.
 – K=7, R=1/2, 2/3, 3/4; terminated tail
 • Optional R=7/8
• Interleaver is needed to avoid adjacent faded bits
• Turbo Codes shall be used as an option with FFT-256 mode
 – One BTC block per one OFDM symbol
 • Possibly per integer number of OFDM symbols
 – BTC parameters chosen per constellation+rate
Modulation, ECC and Data Rates

3.5 MHz wide channels, 52 subcarriers, 12.5% guard interval

<table>
<thead>
<tr>
<th>Modulation</th>
<th>Coding rate</th>
<th>Data Rate</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPSK</td>
<td>R=1/2</td>
<td>1.33 Mbit/s</td>
<td>-94</td>
</tr>
<tr>
<td>BPSK</td>
<td>R=3/4</td>
<td>2.00 Mbit/s</td>
<td>-93</td>
</tr>
<tr>
<td>QPSK</td>
<td>R=1/2</td>
<td>2.67 Mbit/s</td>
<td>-91</td>
</tr>
<tr>
<td>QPSK</td>
<td>R=3/4</td>
<td>4.00 Mbit/s</td>
<td>-87</td>
</tr>
<tr>
<td>16QAM</td>
<td>R=1/2</td>
<td>5.33 Mbit/s</td>
<td>-86</td>
</tr>
<tr>
<td>16QAM</td>
<td>R=3/4</td>
<td>8.00 Mbit/s</td>
<td>-82</td>
</tr>
<tr>
<td>64QAM</td>
<td>R=2/3</td>
<td>10.67 Mbit/s</td>
<td>-78</td>
</tr>
<tr>
<td>64QAM</td>
<td>R=3/4</td>
<td>12.00 Mbit/s</td>
<td>-77</td>
</tr>
<tr>
<td>256QAM</td>
<td>R=2/3</td>
<td>14.22 Mbit/s</td>
<td>-73</td>
</tr>
<tr>
<td>256QAM</td>
<td>R=3/4</td>
<td>16.00 Mbit/s</td>
<td>-71</td>
</tr>
</tbody>
</table>

Sensitivity assumes NF=6 dB and 4 dB implementation loss
Data Rates with 256pt FFT

3.5 MHz wide channels, 216 subcarriers, 3.1% guard interval

<table>
<thead>
<tr>
<th>Modulation</th>
<th>Coding rate</th>
<th>Data Rate</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPSK</td>
<td>R=1/2</td>
<td>1.62 Mbit/s</td>
<td>-94</td>
</tr>
<tr>
<td>BPSK</td>
<td>R=3/4</td>
<td>2.44 Mbit/s</td>
<td>-93</td>
</tr>
<tr>
<td>QPSK</td>
<td>R=1/2</td>
<td>3.25 Mbit/s</td>
<td>-91</td>
</tr>
<tr>
<td>QPSK</td>
<td>R=3/4</td>
<td>4.87 Mbit/s</td>
<td>-87</td>
</tr>
<tr>
<td>16QAM</td>
<td>R=1/2</td>
<td>6.50 Mbit/s</td>
<td>-86</td>
</tr>
<tr>
<td>16QAM</td>
<td>R=3/4</td>
<td>9.75 Mbit/s</td>
<td>-82</td>
</tr>
<tr>
<td>64QAM</td>
<td>R=2/3</td>
<td>13.00 Mbit/s</td>
<td>-78</td>
</tr>
<tr>
<td>64QAM</td>
<td>R=3/4</td>
<td>14.62 Mbit/s</td>
<td>-77</td>
</tr>
<tr>
<td>256QAM</td>
<td>R=2/3</td>
<td>17.33 Mbit/s</td>
<td>-73</td>
</tr>
<tr>
<td>256QAM</td>
<td>R=3/4</td>
<td>19.50 Mbit/s</td>
<td>-71</td>
</tr>
</tbody>
</table>

Sensitivity assumes NF=6 dB and 4 dB implementation loss
Subcarrier based parallel polling

- Fourier Transform allows simultaneous detection of multiple subcarriers sent by multiple users
 - Extreme case of OFDMA combined with On-Off Keying with 1 subcarrier per user.
- CDMA-like, but preserves orthogonality
- Concentrates power, allows higher SNR
- Permute frequencies in each superframe to avoid prolonged fades
Subcarrier based polling

Frame 1

Frame 2

Frame 3
Preamble Structures

• The preamble is used to estimate
 – Antenna diversity selection and AGC convergence
 – Coarse, then fine frequency offset
 – Coarse, then fine timing offset
 – Channel response

• More prior knowledge allows shorter preambles
 – Gain preadjusted by transmit power control
 – Coarse frequency offset known from prior transmissions
 – Timing preadjusted by ranging and timing advance
Preamble for Initial Acquisition

Signal detection
AGC convergence
Diversity selection
Coarse freq. offset estimate

Fine timing acquisition
Fine freq. offset estimation
Channel estimation

RATE and LENGTH
Received at 1.33 Mbit/s

DATA is received at RATE indicated in the SIGNAL field

DATA is received at RATE set by the MAC
Preamble for Re-Acquisition

Fine training sequence
SIGNAL
DATA1
DATA2

Fine timing acquisition
Fine freq. offset estimation
Channel estimation

Received at 1.33 Mbit/s
DATA is received at RATE indicated in the SIGNAL field

DATA is received at RATE set by the MAC
Optional Advanced Techniques

• OFDMA
 – The OFDM preserves orthogonality between transmissions of different users
 – Allows survival at higher path loss

• Space-Time coding
 – The decoupling between equalization and coding plays important role in making those techniques practical
 – New preambles need to be designed for training of response from multiple antennas
Peak2Avg Problem- How bad?

- Worst case peaks are kN times the average
 - N is the number of subcarriers
 - k is constellation dependent, about 2-4 dB
 - 20 dB for $N=52$, 26 dB for $N=216$

- Central Limit Theorem (sum of many small contributions) \Rightarrow amplitude is Rayleigh

- Worst peak in a typical packet is +10 dB

- Some clipping can be tolerated!!
 - OFDM spreads clips over subcarriers
 - Error Correction Coding improves robustness

- Typical PA backoff – 7-9 dB
 - Depends on constellation and on regulatory masks
BRZE’s OFDM proposal Summary

• Parameters draw on 802.11a+HIPERLAN/2 standards
 – Available technology
• Improved performance modes
 – Longer FFTs, improved ECCs
• Fast Parallel Polling for fast demand discovery
• Ready for advanced antenna and multiaccess techniques